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Bedros B. Afeyan, Polymath Associates 
Michael D. Feit, Lnsers 

ABSTRACT 
This aim of this FY 1998 LDRD project was to create a computational tool which 

bridges the gap between wave and ray optical regimes, important for application areas such 
as laser propagation in plasma and multimode photonics. We used phase space methods, 
where a set of rays distributed in a particular way in position and angle retain many 
essential features of wave optics. To characterize and enhance our understanding of the 
method, we developed a GUI-based photonics tool which can analyze light propagation in 
systems with a variety of axial and transverse refractive index distributions. 

INTRODUCTION 
Until the mid- 19th century, natural philosophers argued vigorously over whether 

light was in reality a wave or a particle. Compelling reasons existed for both points of 
view: light seemed to travel mostly in straight lines like a particle, but showed diffraction 
and interference like a wave. In the early 20th century the same issues surfaced again in the 
context of the quantum theory, where both light and matter exhibited both wave-like and 
particle-like behavior, depending on the observational setting. 

The ability of light to act like. a wave or a particle has practical consequences for the 
calculation of its propagation. For systems large compared to a wavelength, such as 
conventional bulk optics, particle-like geometrical optics is usually a good approximation. 
On the other hand, if the scale of features is on the order of a wavelength, such as at a focal 
point, solving a wave equation is necessary to capture the physics of diffraction. Often, as 
in this bulk optics example, both circumstances arise in subdomains of the same problem. 

Many practical situations important to LLNL programs share this dual length-scale 
property. One important application area is laser propagation in fusion plasmas. Traditional 
modeling uses ray tracing to transport the laser intensity and this is usually a good 
approximation. But when plasma gradients are wavelength scale, as may occur in regions 
of NIF targets, a wave optical treatment is essential. Another relevant area is multimode 
photonics. A multimode optical fiber may be optically large, but calculating the effects of 
interference between the modes-speckle-is of critical importance. 

The purpose of our FY98 LDRD proposal, “Hybrid Ray/Wave Optics for Laser- 
Plasma Interaction” was to create a computational tool which would move easily between 
the wave and ray optical regimes. We accomplished this by using phase space methods, 
where a set of rays distributed in a particular way in position and angle retain many 
essential features of wave propagation, including diffraction’. By launching the right set of 
rays, diffraction can be calculated directly from the ray distribution without explicitly 
solving a wave equation. In this way, a problem domain can easily use both ray and wave 
optics in the regions where the descriptions are most appropriate. To characterize and 
enhance our understanding of the method, we developed a GUI-based photonics tool 
which can analyze light propagation in systems with a variety of axial and transverse 
refractive index distributions. 

This article will give an overview of our work in FY 1998. First, we will convey the 
principles of the phase space method and give some simple examples. Then, we will 
describe the software tool we developed to study the propagation of fields through the 
Wigner method. This tool allows us to study the important issue of the appropriate 
sampling of rays in the phase space to achieve desired accuracy. Further examples of light 
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propagation in systems with a variety of axial and transverse refractive index distributions 
will be given. Finally, we will desci-ibe some of the limitations of our current scheme and 
the path we envision for further qevelopment and applications. 

PROGRESS 
The Method. We usually think of an electric field as a vector quantity which 

varies in space and time according to Maxwell’s electromagnetic field equations. We can 
also describe the field in terms of the wavenumbers or spatial frequencies which comprise it 
(“Fourier representation”). However, it is sometimes most natural to think in terms of a 
mixed representation, whereby the field is thought of as a set of spatial frequencies, the 
spectrum of which changes with position. This is analogous to the way music, which is a 
pressure oscillation changing in time, can be represented by a musical score which shows a 
set of pitches (frequencies) changing in time. For the electric field, a wavenumber defines 
a direction in space; the coordinates of the direction are a set of angles. Thus the field can 
be represented by a function of position and angle, which defines the ray phase space. 

One such function is known as the Wigner distribution, introduced by E. P. 
Wigner in 1923*. The Wigner distribution allows quantum mechanical quantities to be 
calculated using a distribution function on a classical-like position-momentum phase space, 
much as we will use it to calculate wave optical properties on a position-angle phase space. 
Mathematically the Wigner transform can be thought of as a Fourier transform not of the 
field, but of its correlation function relating the field at two points 
in space. An example of a Wigner distribution is shown in Fig. 1. for a Gaussian field and 
for a uniformly illuminated aperture. Qualitatively, the reason diffraction is included in the 
ray description is that at each point in space one has a fan of ray angles: this is just a 
manifestation of the Fourier uncertainty principle. The Wigner distribution is not strictly a 
phase space density, however, since it is not always positive. 

Field Wigner Transform 

Figure 1. Wigner phase space distributions for a Gaussian field (top) and a uniformly 
illuminated aperture (bottom). 
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The Wigner propagation algorithm works as follows. From an initial complex 
electric field distribution, we calc&te the Wigner transform. This distribution is then 
evolved in space by simply trangporting it along rays, that is, assuming conservation along 
a ray. This will be an excellent approximation if the index is not too rapidly varying on a 
wavelength scale. If at every position in the ray phase space for the new (evolved) 
distribution, we integrate over all ray angles, we obtain the intensity distribution 
(“nearfield”) as a function of spatial position. Conversely, if at each angle in phase space 
we integrate over position, we obtain the intensity distribution as a function of ray angle 
(“farfield”). Since in wave tics the nearfield and farfield amplitudes are related by Fourier 
transform, the complex electric field can be reconstructed (up to a constant phase factor) 
from the ray intensity distributions in position and angle. 

As an example of a calculation using the Wigner propagation algorithm, we 
calculated the diffraction pattern from a double slit (see Fig. 2). The Wigner function is 
calculated in the plane of the slits, then propagated along rays to the plane of the screen. 
The calculated result and the exact solution are overlaid, and agreement is excellent. In fact, 
for free propagation, the Wigner method is formally exact, and the only errors are due to 
sampling. This illustration shows strikingly that diffraction and interference, usually 
considered outside the domain of ray optics, can be obtained through ray tracing the 

.bution. 

I- 
- analvtic intensity 

Figure 2. Wigner phase space method calculation of double4 diffraction by ray tracing. 

PHASTER. To study the Wigner method we developed a GUI-based code which 
allows us to propagate beams in a variety of media in two spatial dimensions. We call the 
code “PHASTER”: Phase Space Techniques for Electromagnetics Research. PHASTER 
allows us to set up an arbitrary initial beam consisting of a sum of Gaussians with selected 
widths and amplitudes. After computing and displaying the Wigner distribution for the 
beam, it will solve the ray equations for a set of points in the ray phase space which sample 
the Wigner distribution in a prescribed manner. The rays are traced using an adaptive 
Runge-Kutta method through a variety of refractive index distributions having both 
transverse and axial variation. After propagating the prescribed set of rays to the exit plane, 
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it will display the phase space distribution at the exit plane, as well as the x-space and angle 
space intensities (nearfield and farfield). PHASTER gives useful insight into the dynamics 
of the rays in phase space and their effect on the wave optical distribution. 

Our first example of a PHASTER calculation is shown in Fig. 3. A Gaussian beam 
is shown propagating through three “soft slabs”, i.e., small regions where the refractive 
index rises and falls, depicted in the central window of the GUI. The contour plot on the 
left shows the initial Wigner distribution of the Gaussian. Below it we see the x-space 
intensity, and to the left the angle-space intensity (farfield). The windows on the far right 
show the analogous data for the propagated distribution. Note that the phase space 
distribution has become elongated and tilted: this is simply a graphic depiction of 
diffraction. Rays at large magnitude angles (top and bottom of distribution) move fastest in 
x, while small angle rays (near center of distribution) move little. The result is a spreading 
of the x-space distribution while the angular distribution does not change, exactly what we 
would expect from simple free-space diffraction. Additional spreading in x-space occurs 
due to the plates, but not in angle because rays receive no transverse impulse from the 
axially varying index. 

Figure 3. PHASTER calculation of propagation through three slabs. The tilted distribution on 
the right is the manifestation of diffraction in the ray phase space. 
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Fig. 4 shows propagation in a waveguiding structure. The rays are obviously confined to 
the waveguide, and at the exit have formed a ‘galaxy’ shaped distribution. A given ray will 
encircle the origin as it traces out a periodic path, but the frequency of the rotation decreases 
as the angle increases, causing the spiraling. 

Figure 4. PHASTER calculation of waveguide propagation, showing rays with transverse 
turning points. 
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A third example is shown in Fig. 5. Here a beam is incident at an oblique angle on a linear 
index gradient, a model for a laser propagating in a plasma. A subset of the rays is reflected 
by the plasma index gradient, while the rays getting through form the distorted distribution 
on the right. This example is of particular interest because the problem admits an exact 
solution in terms of Airy functions3 and thus will allow direct evaluation of accuracy. 

Figure 5. PHASTER calculation for oblique incidence on an inhomogeneous plasma with a linear 
density gradient. 
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Our final example, Fig. 6, shows the propagation of a speckled beam through the 
inhomogeneous plasma. By speckled we mean that we are launching a set of Gaussians 
with a distribution of transverse tilt angles and random phases. Propagation of speckle is 
important for laser-plasma interaction physics and also for propagation in multimode fiber. 
Again an exact solution to this problem is available. 

Figure 6. PHASTER calculation for speckled beam at normal incidence on inhomogeneous 
plasma 

An important feature of the code is its flexibility in sampling the phase space at the 
entrance plane so as to put a higher density of rays where the Wigner distribution has larger 
values. Sampling is critical for the method, because if we do not sample wisely we suffer 
in computational efficiency for a given accuracy. PHASTER allows us to divide the phase 
space into rectangular bins and vary the size of the subdivisions of the bins. 

FUTURE WORK 
The Wigner method shows great promise as a wave propagation algorithm. and 

much remains to be done to fully exploit its capabilities. To treat reflections accurately, for 
example, requires extending the calculation to the time domain. The method will be most 
effective when it is relatively inexpensive to trace rays, as in bulk optics where all that is 
required is Snell’s law refraction (and reflections if wanted) at boundaries; u’e are in the 
process of developing a three-dimensional bulk optics solver. We have also heretofore 
ignored polarization, which can also be included. More subtle effects such as accurately 
calculating tunneling will require propagating complex rays. 
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For the method to come to full fruition, we have recognized that using rays is only a 
first step. Because rays are one-dim&sional, it is difficult to sample a two or three- 
dimensional space effectively. Ope extension is to use “fat rays” or Gaussian basis 
functions whose center propagates along a ray. Ultimately we envision using a wavelet 
basis, which can optimally sample a system which has disparate length scales. Resolution 
can be applied only where needed and crude representations retained where they cause 
minimal harm. This way, from rays To full wave optics in phase space can be simulated by 
retaining a hierarchy of successively more accurate approximations. 

In FY 1999, we are focusing on applications of the Wigner method to multimode 
photonics, where effective simulation tools are in demand but full wave optics solvers are 
computationally difficult4. 
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